

Heavy Quarks & PDFs

Fred Olness

SMU

Conspirators:

P. Nadolsky, K. Park, M. Guzzi I Schienbein, J.-Y. Yu, K. Kovarik, T.P. Stavreva,

J. Owens, J. Morfin, C. Keppel, D. Soper ...

Loopfest 23 June 2010

Motivation: Heavy Quarks and the multi-scale problem

Two examples why heavy quarks are important

Mass terms can be leading effect

$$F_L \sim rac{m^2}{Q^2} \; q(x) + lpha_S \{...\}$$
 Masses are important

"Heavy Quarks" play a prominent role at the LHC

... heavy is a relative term
Two scale problem

Loopfest Page 2

Good News

GOOD NEWS: We have multiple schemes for heavy quark calculation

We have made progress in addressing how to compute heavy quarks. Recent efforts by many groups

The Cast:

ACOT & S-ACOT Codes

Used in CTEQ4HQ, 5HQ, 6HQ

Aivazis, Collins, Olness, Tung, Phys.Rev.D50:3102-3118,1994.

Thorne-Roberts (TR')

MSTW Fits

Thorne, Phys.Rev.D73:054019,2006.

S-ACOT *CTEQ 6.5 & 6.6*

Tung, Lai, Belyaev, Pumplin, Stump, Yuan, JHEP 0702:053,2007.
Nadolsky, Tung, Phys.Rev.D79:113014,2009.

FONLL:
Used in NNPDF Fits

Forte, Laenen, Nason, Rojo, Nucl.Phys.B834:116-162,2010.

A man with one watch knows what time it is ...

2009 Les Houches Comparative Studies

The SM and NLO Multileg Working Group: Summary report.

e-Print: arXiv:1003.1241 [hep-ph]

Physics at TeV Colliders

Les Houches 8-26 June 2009

Les Houches Comparative Study

The SM and NLO Multileg Working Group: Summary report.

e-Print: arXiv:1003.1241 [hep-ph] J. Rojo, et al.,

ACOT code &
Nadolsky/Tung

Results check

Compare ▲ with

bottom curve

$$x = \zeta (1 + \zeta^{\lambda} m^2/Q^2)^{-1}$$

The Short Story:

S-ACOT implementation matches

Aivazis, Collins, Olness, Tung, Phys.Rev.D50:3102-3118,1994.

S-ACOT *CTEQ 6.5 & 6.6*

Tung, Lai, Belyaev, Pumplin, Stump, Yuan, JHEP 0702:053,2007.
Nadolsky, Tung, Phys.Rev.D79:113014,2009.

S-ACOT & TR' Separate schemes **S-ACOT & FONLL-A similar**

FONLL: Used in NNPDF Fits

Forte, Laenen, Nason, Rojo, Nucl.Phys.B834:116-162,2010.

TR' & FONLL-C similar

Thorne-Roberts (TR')

MSTW Fits

Thorne, Phys.Rev.D73:054019,2006.

Compare & Contrast ACOT & TR

TR type schemes				ACOT type schemes	
	erk type s	Q > m _H	constant term	$Q < m_H$	Q > m_H constant term
LO	Son Leege	7	Q = m _H	LO Ø	+Ø
NLO	+	+ 22 Leece	$Q = m_H$	NLO NLO	+ + Ø
NNLO		+ N	$Q = m_H$	NNLO ***	+ + Ø

Different schemes \Rightarrow Different PDFs \Rightarrow yet consistent σ Differences reduce at:

- 1) higher Q,
- 2) higher order

If experiments are sensitive, time to compute to higher order

ACOT: $m \rightarrow 0$ limit yields MS-Bar with no finite renormalization

Based on the Collins-Wilczek-Zee (CWZ)
Renormalization Scheme
... hence, extensible to all orders

DGLAP kernels & PDF evolution are pure MS-Bar Definition of Subtractions analogous to MS-Bar

The minimal extension of MS-Bar scheme

Fred Olness 23 June 2010 Loopfest Page 15

Basic Factorization Formula

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

Note: not m²/Q²

At Zeroth Order:

Use: $f^0 = \delta$ and $d^0 = \delta$ for a parton target.

 f^0 f^1

for parton target

Therefore:

$$\sigma^0 = f^0 \otimes \omega^0 \otimes d^0 = \delta \otimes \omega^0 \otimes \delta = \omega^0$$

$$\sigma^0 = \omega^0$$

Z massive projection operators Collins (1998)

Warning: This trivial result leads to many misconceptions at higher orders

Fred Olness 23 June 2010 Loopfest Page 18

Basic Factorization Formula

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

<u>At NLO:</u>

$$\sigma^{1} = f^{1} \otimes \omega^{0} \otimes d^{0} + f^{0} \otimes \omega^{1} \otimes d^{0} + f^{0} \otimes \omega^{0} \otimes d^{1}$$

$$\sigma^1 = f^1 \otimes \sigma^0 + \omega^1 + \sigma^0 \otimes d^1$$

We used: $f^0 = \delta$ and $d^0 = \delta$ for a parton target.

 f^0

 f^1

Therefore:

$$\omega^{1} = \sigma^{1} - f^{1} \otimes \sigma^{0} - \sigma^{0} \otimes d^{1}$$

Z massive projection operators Collins (1998)

Rule of Thumb: When do we need to consider heavy quark PDF???

MORAL: You don't have to choose which expansion point you use;

by using the Heavy Quark PDF, QCD will compensate

In practice ...

Using the heavy quark PDF's we can accommodate quark masses of any values: e.g., 10⁻¹⁵⁰ to 10⁺¹⁵⁰

X Scaling

χ-Scaling: Effect of Kinematic Mass Re-Scaling

ACOT (Aivazis, Collins, Olness, Tung) A general framework for including the heavy quark components.

*Phys.Rev.D50:3102-3118,1994.

S-ACOT (Simplified-ACOT) ACOT with the initial-state heavy quark masses set to zero.

Phys.Rev.D62:096007,2000.

ACOT-χ & S-ACOT-χ: As above with a generalized slow-rescaling

Phys.Rev.D62:096007,2000.

Kinematic Masses are more important than Dynamical Masses (in general)

Fred Olness 23 June 2010 Loopfest Page 23

Kinematic Masses are more important than Dynamical Masses (in general)

F(X,Q)

777

Caution: Don't confuse $xF_2(x,Q^2)$ and $\chi F_2(\chi,Q^2)$

MILO

Application of Factorization Formula at Next to Next to Leading Order NNLO

Basic Factorization Formula

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

At NNLO:

$$\sigma^{2} = f^{2} \otimes \omega^{0} \otimes d^{0} + f^{0} \otimes \omega^{2} \otimes d^{0} + f^{0} \otimes \omega^{0} \otimes d^{2}$$
$$+ f^{1} \otimes \omega^{1} \otimes d^{0} + f^{1} \otimes \omega^{0} \otimes d^{1} + f^{0} \otimes \omega^{1} \otimes d^{1}$$

We used: $f^0 = \delta$ and $d^0 = \delta$ for a <u>parton</u> target.

 f^0 f^1 f^2

Fred Olness 23 June 2010 Loopfest Page 29

S-ACOT:

Works great at NLO Issues at NNLO

χ scaling:

Difficulties at NNLO Issues *even* at NLO,

I showed you best case (x=0.1)

In contrast, full ACOT:

• Extensible to all orders

Benefits from recent progress of higher order massive calculations

• Includes masses in scaling variable (χ) Avoids m ambiguities at NNLO

• Reduces to MS-Bar in $m\rightarrow 0$ limit

No finite renormalization terms

Conclusions

Heavy Quarks:

Essential to properly incorporate mass effects for required precision Improved measurements of F^2 , F^{cc} , F^{bb} , and F_L :

Improved precision for LHC where heavy flavors play a prominent role

2009 Les Houches Benchmark Comparisons:

Highlights recent progress

Important reference point

Shows theoretical scheme uncertainty

Comparisons enlightening

Theoretically, we can now compute full dynamic mass range [10⁻¹⁵⁰,10⁺¹⁵⁰] ACOT natural massive extension of MS-bar

Separate roles of dynamic and kinematic masses illustrated

Mass effects are essential:

Improvement, progresss, & understanding on theoretical side:

Thanks to: P. Nadolsky, K. Park, M. Guzzi I Schienbein, J.-Y. Yu, K. Kovarik, T.P. Stavreva J. Owens, J. Morfin, C. Keppel, D. Soper ...